Announcements

1) It 2 due Thursday

Example from last time: image compression
"large" file represented as a matrix

$$
\left[\begin{array}{cc|cc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]
$$

average over 2×2 blocks to get a smaller file

We get

$$
\left[\begin{array}{cc}
\frac{14}{4} & \frac{22}{4} \\
\frac{23}{2} & \frac{54}{4}
\end{array}\right]
$$

Want: express this process using matrix multiplication

Matrix Multiplication

The rules: Given an $m \times n$ matrix A (m rows, n columns), we can multiply A on the

1) left by a $k \times m$ matrix (same number of columns as A has rows) to get a $k \times n$ matrix
2) right by a $n \times l$ matrix (same number of rows as A has columns) to get an $m \times l$ matrix

The idea: dot products

$$
\begin{aligned}
& \text { Example 1: } A=\left[\begin{array}{cc}
-1 & 3 \\
2 & 5
\end{array}\right] \\
& B=\left[\begin{array}{cc}
3 & 8 \\
-1 & 15 \\
-6 & 4
\end{array}\right] \\
& B \cdot A=\left[\begin{array}{cc}
3 & 8 \\
-1 & 15 \\
-6 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
2 & 5
\end{array}\right] \\
& =\left[\begin{array}{ll}
3(-1)+8 \cdot 2 & 3 \cdot 3+8 \cdot 5 \\
(-1)(-1)+15 \cdot 2 & (-1) \cdot 3+15 \cdot 5 \\
(-6)(-1)+4 \cdot 2 & (-6) \cdot(3)+4 \cdot 5
\end{array}\right]
\end{aligned}
$$

$1^{\text {st }}$ row of B $1^{\text {st }}$ now of B dot product with dot product with st colum of A ancolomn if A

$$
\left[\begin{array}{ll}
3(-1)+8 \cdot 2 & 3 \cdot 3+8 \cdot 5 \\
(-1)(-1)+15 \cdot 2 & (-1) \cdot 3+15 \cdot 5 \\
(-6)(-1)+4 \cdot 2 & (-6) \cdot(3)+4 \cdot 5
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
13 & 49 \\
31 & 42 \\
14 & 2
\end{array}\right]
$$

a 3×2 matrix

In general:
If A is $m \times n$ and B is $k \times m$,
$(B A)_{i, j}=\underset{\text { entry in the } i^{\text {th }} \text { row, }}{ }$ $j^{\text {th }}$ column of $B A$

$$
(1 \leq i \leq k, 1 \leq j \leq n)
$$

$=\operatorname{dot}$ product of the i nh row of B with the j th colon of A $=$ a number.
For example, $(B A)_{3,5}=$ dot product of the $3^{\text {rd }}$ row of B with the $5^{\text {th }}$ column of A

Buck to compression:
we started with a 4×4 matrix
A and ended with a 2×2 matrix D. Since we changed both the rows and columns of A (in terms of their number), we need to find matrices B and C with

$$
\begin{gathered}
B A C=D \\
B=2 \times 4 \\
C=4 \times 2
\end{gathered}
$$

Stepl: Find B, make it averaye-almost!

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{1}{4}
\end{array}\right]\left[\begin{array}{cc|cc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]} \\
=\left[\begin{array}{cc|cc}
\frac{6}{4} & \frac{8}{4} & \frac{10}{4} & \frac{12}{4} \\
\hline \frac{22}{4} & \frac{24}{4} & \frac{26}{4} & \frac{28}{4}
\end{array}\right]
\end{gathered}
$$

Step 2: Find 6, make it add the numbers in the blue 1×2 blocks C

$$
\begin{gathered}
{\left[\begin{array}{cc|cc}
\frac{6}{4} & \frac{8}{4} & \frac{10}{4} & \frac{12}{4} \\
\frac{22}{4} & \frac{24}{4} & \frac{26}{4} & \frac{28}{4}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]} \\
=\left[\begin{array}{cc}
\frac{14}{4} & \frac{22}{4} \\
\frac{46}{4} & \frac{54}{4}
\end{array}\right]
\end{gathered}
$$

Example 2: Start with a 3×3 matrix

$$
\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
\hline 7 & 8 & 9
\end{array}\right]=A
$$

average over the orange blocks to a gain get a 2×2 matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1+2+4+5}{4} & \frac{3+6}{2} \\
\frac{7+8}{2} & 9
\end{array}\right]} \\
& =\left[\begin{array}{cc}
3 & \frac{9}{2} \\
\frac{15}{2} & 9
\end{array}\right]=1
\end{aligned}
$$

Want B,C where

$$
B A C=D
$$

Step: Find B, make it "average"

$$
\begin{gathered}
{\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
=\left[\begin{array}{lll}
\frac{5}{2} & \frac{7}{2} & \frac{9}{2} \\
7 & 8 & 9
\end{array}\right]
\end{gathered}
$$

Step 2: Find C, make it "wrrect" any errors from B

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\frac{5}{2} & \frac{7}{2} & \frac{9}{2} \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ll}
\frac{12}{4} & \frac{9}{2} \\
\frac{15}{2} & 9
\end{array}\right]=\left[\begin{array}{cc}
3 & \frac{9}{2} \\
\frac{15}{2} & 9
\end{array}\right]
\end{aligned}
$$

Easy Path

Vectorization: take an $n \times m$ matrix, tum it into an

$$
n M \times 1 \text { vector. }
$$

Example 3

$$
A=\left[\begin{array}{rr}
-6 & 55 \\
4 & 3
\end{array}\right]
$$

$$
2 \times 2 \text { matrix }=4 \text { entries }
$$

vector should be 4×1

$$
v=\left[\begin{array}{c}
-6 \\
55 \\
4 \\
3
\end{array}\right]
$$

remembers all the entries of A
The position of the numbers in A is ambiguous just given V.

How do we do this using matrices?
Want a UnI vector from example.

$$
\begin{aligned}
& 2 x^{2} \\
& \left.(4 \times 2) A^{2 \times 1}\right) \\
& A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
-6 & 55 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-6 \\
4
\end{array}\right] \\
& A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
55 \\
3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] A\left[\begin{array}{l}
1 \\
0
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-6 \\
4
\end{array}\right] \\
& =\left[\begin{array}{r}
-6 \\
4 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] A\left[\begin{array}{l}
0 \\
1
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
55 \\
3
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
55 \\
3
\end{array}\right]
\end{aligned}
$$

add the outputs to get $\left[\begin{array}{c}-6 \\ 4 \\ 55 \\ 3\end{array}\right]$

This procedure vectorizes A, but we don't get the vector we wanted - the order is off.

To fix the order, multiply by a permutation matrix, in this case

$$
\left[\begin{array}{c}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-6 \\
4 \\
55 \\
3
\end{array}\right]} \\
=\left[\begin{array}{c}
-6 \\
55 \\
4 \\
3
\end{array}\right]
\end{array}\right.
$$

If wo wanted to average the entries of A, we could multiply our vector by

$$
\left.\begin{array}{l}
1 \times 4 \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]\left[\begin{array}{c}
-6 \\
55 \\
4 \\
3
\end{array}\right]
$$

We could write this process as (forgetting the permutation matrix)

$$
\left.\begin{array}{rl}
{\left[\frac{1}{4}\right.} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right] \cdot\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] A\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

Back to example $2:$

$$
\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
\hline 7 & 8 & 9
\end{array}\right]=A
$$

Step 1: vectorize A.

$$
\left.\begin{array}{l}
\text { Step 1: vectorize } \left.A \cdot \begin{array}{c}
3 \times 1 \\
9 \times 3 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{c}
1
\end{array}\right]
$$

where $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left(\begin{array}{c}\text { identity } \\ \text { matrix) }\end{array}\right.$

$$
\text { and } O_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left(\begin{array}{c}
\text { zero } \\
\text { matrix })
\end{array}\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{3} \\
0_{3} \\
0_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
& \quad=\left[\begin{array}{l}
I_{3} \\
0_{3} \\
0_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right] \\
&
\end{aligned}=\left[\begin{array}{l}
1 \\
4 \\
7 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \$
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
O_{3} \\
I_{3} \\
0_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& =\left[\begin{array}{l}
0_{3} \\
I_{3} \\
0_{3}
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
6 \\
2 \\
5 \\
8 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
0_{3} \\
0_{3} \\
I_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& =\left[\begin{array}{l}
0_{3} \\
0_{3} \\
I_{3}
\end{array}\right]\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
3 \\
6 \\
9
\end{array}\right] \text { add all vectors ! }
\end{aligned}
$$

We get $\left[\begin{array}{l}1 \\ 4 \\ 7 \\ 2 \\ 5 \\ 8 \\ 3 \\ 6 \\ 9\end{array}\right]=v$

$$
\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
\hline 7 & 8 & 9
\end{array}\right]=A
$$

Averaging gets a 2×2 matrix. we need to multiply v by

$$
(2 \times 9) r^{v}(1 \times 2)
$$

$$
4 \times 9
$$

Cheat - make a 4×1 vector that contains the averaged entries of A. Each row should average a particular "block" of A.

We get

$$
\left[\begin{array}{c}
3 \\
\frac{15}{2} \\
\frac{9}{2} \\
9
\end{array}\right]
$$

recover the $2+2$ matrix by reversing the vectorization process.

General Implementation

To average and $n \times m$ matrix into keel "blocks", first vectorize

$$
\sum_{i=1}^{m} I_{n, i} A e_{i}^{(n)}
$$

where $e_{i}^{(m)}=m \times 1$ vector with a one in the $i^{\text {th }}$ now and zeroes in all other nous

$$
\sum_{i=1}^{m} I_{n, i} A e_{i}^{(n)}
$$

where $e_{i}^{(m)}=m \times 1$ vector with a one in the $i^{\text {th }}$ now and zeroes in all other nous
and

$$
\begin{aligned}
& I_{n, i}=n m \times n \text { matrix with } \\
& T_{0} \text { block in the th }
\end{aligned}
$$

In block in the $i^{\text {th }}$ position, zeros every where else

Then a verage the noel vector into a $K l x l$ vector by choosing a $\mathrm{Kl} \times \mathrm{KM}_{\mathrm{m}}$ matrix with, in each row, nonzero entries at the corresponding row positions to the numbers you want to average in the $n m \times l$ vector, the entries all being the number of entries being averaged. Last step! undo vectorization.

Example 4:

$$
A=\left[\begin{array}{c|rr|rr}
5 & -1 & -2 & 0 & 3 \\
8 & 4 & 11 & 6 & -3
\end{array}\right]
$$

make A into a 1×3 matrix by averaging in the indicated blocks.

Express this procedure using matrices.

Step 1: vecturize A need a 10×1 vector

$$
\begin{aligned}
& \text { (} 10 \times 2 \text {) A (5×1) } \\
& {\left[\begin{array}{l}
I_{2} \\
O_{2} \\
0_{2} \\
O_{2} \\
O_{2}
\end{array}\right] A\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& =\left[\begin{array}{l}
I_{2} \\
0_{2} \\
0_{2} \\
\mathrm{O}_{2} \\
0_{2}
\end{array}\right]\left[\begin{array}{ccccc}
5 & -1 & -2 & 0 & 3 \\
8 & 4 & 11 & 6 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
5 \\
8 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Continue:

$$
\begin{aligned}
& \begin{array}{l}
\text { Continue: } \\
{\left[\begin{array}{l}
\mathrm{O}_{2} \\
\mathrm{I}_{2} \\
\mathrm{O}_{2} \\
\mathrm{O}_{2} \\
\mathrm{O}_{2}
\end{array}\right] A\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
4 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{l}
O_{2} \\
O_{2} \\
I_{2} \\
O_{2} \\
O_{2}
\end{array}\right] A\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-2 \\
11 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0_{2} \\
0_{2} \\
0_{2} \\
I_{2} \\
0_{2}
\end{array}\right] A\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
0_{2} \\
0_{2} \\
0_{2} \\
0_{2} \\
I_{2}
\end{array}\right] A\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-3
\end{array}\right]}
\end{aligned}
$$

Add all vectors to get

$$
\operatorname{average}\left[\begin{array}{c}
5 \\
8 \\
-1 \\
4 \\
-2 \\
11 \\
0 \\
6 \\
3 \\
-3
\end{array}\right]=\text { average } \quad \text { vectorited }
$$

Step 2: Average to get a 3×1 vector. Express using matrices.

$$
\begin{aligned}
& (3 \times 10)\left[\begin{array}{r}
5 \\
8 \\
-1 \\
4 \\
-2 \\
11 \\
0 \\
6 \\
3 \\
-3
\end{array}\right]
\end{aligned}
$$

Step 3 Undo vectorization - if you want!

